Решения задач

25.02.2021

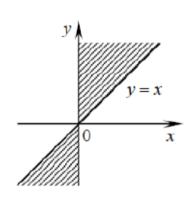
XIX открытая олимпиада по математике ГГТУ им. П.О.Сухого

Школьники 11 класс

1. (10 баллов)

Изобразите множество точек плоскости Оху, для которых верно равенство |x| + |y - x| = |y|.

Решение.



Поскольку сумма модулей двух величин равна модулю их суммы в том и только в том случае, когда они имеют одинаковый знак, имеем

$$|x| + |y - x| = |y| \Leftrightarrow |x| + |y - x|$$
$$= |x + (y - x)| \Leftrightarrow$$

$$\Leftrightarrow x(y-x) \ge 0.$$

Искомое множество изображено на рисунке.

2. (10 баллов)

Найти все значения параметра a, при которых система неравенств $\begin{cases} x^2 + 2x - a \leq 0, \\ x^2 - 4x + 6a \leq 0 \end{cases}$

$$\begin{cases} x^2 + 2x - a \le 0, \\ x^2 - 4x + 6a \le 0 \end{cases}$$

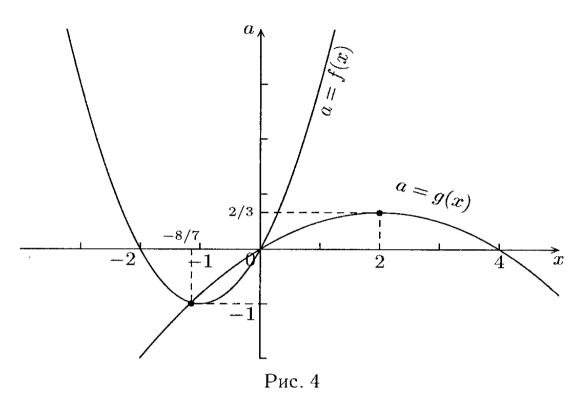
имеет единственное решение.

Решение.

Исходная система неравенств равносильна следующей:

$$\begin{cases} x^2 + 2x \le a, \\ \frac{4x - x^2}{6} \ge a. \end{cases}$$

Построим графики функций $a=x^2+2x=f(x)$ и $a=\frac{4x-\dot{x}^2}{6}=g(x)$ (см. рис. 4).



Эти графики пересекаются в точках с абсциссами $-\frac{8}{7}$ и 0, $f(x)\geqslant -1$ и $g(x)\leqslant \frac{2}{3}$ при $x\in\mathbb{R}$.

При a<-1 неравенство (1) не имеет решений, а при $a>\frac{2}{3}$ неравенство (2) не имеет решений.

При каждом значении $a=a_0$, где $a_0\geqslant -1$ множество E_1 решений неравенств (1) состоит из абсцисс тех точек графика функции a=f(x), которые лежат ниже прямой $a=a_0$ и на этой прямой.

Аналогично, при каждом $a=a_0$, где $a_0\leqslant \frac{2}{3}$, множество E_2 решений неравенства (2) состоит из абсцисс тех точек графика функции a=g(x), которые лежат выше прямой $a=a_0$ и на этой прямой.

Если $a_0\in\left(0,\frac23\right]$, то множества E_1 и E_2 — отрезки (при $a_0=\frac23$ множество E_2 — точка x=2), не имеющие общих точек (E_1

и E_2 лежат по разные стороны от точки x=0). В этом случае система (1)-(2) несовместна (не имеет решений).

Если $a_0=0$, то множества E_1 и E_2 имеют единственную общую точку x=0, т.е. при a=0 системы (1)-(2) имеет единственное решение.

Если $-1 < a_0 < 0$, то пересечение E множеств E_1 и E_2 — отрезок. В этом случае система имеет бесконечное множество решений (каждая точка $x \in E$ — решение системы (1) - (2)).

Наконец, при a = -1 система имеет единственное решение x = -1.

Omsem:
$$a = -1$$
, $a = 0$.

3. (10 баллов)

Решить неравенство

$$\log_3(4-\sin 3x) \le \cos \frac{12x}{5}.$$

Решение.

Так как $4 - sin3x \ge 3$, то $log_3(4 - sin3x) \ge 1$.

Так как $\cos \frac{12x}{5} \le 1$, то $\log_3(4 - \sin 3x) \ge \cos \frac{12x}{5}$.

Получаем уравнение $log_3(4-sin3x)=cos\frac{12x}{5}$, которое имеет место, если обе части равны 1.

$$\begin{cases} \cos \frac{12x}{5} = 1, \\ \sin 3x = 1. \end{cases} \begin{cases} x = \frac{\pi}{6} (4n+1), n \in \mathbb{Z} \\ x = \frac{5\pi k}{6}, k \in \mathbb{Z}. \end{cases}$$

Находим пересечение : $x = \frac{\pi}{6}(4m + 1), m \in \mathbb{Z}$.

Omeem:
$$x = \frac{\pi}{6}(4m + 1), m \in \mathbb{Z}$$
.

4. (10 баллов)

Площадь прямоугольного треугольника равна 16 см², а его периметр является наименьшим из возможных при данной площади. Найти длины сторон треугольника и его периметр. *Решение*.

$$S = \frac{ab}{2} = 16$$
, $ab = 32$.

Периметр

$$P(a) = a + b + c = a + \frac{32}{a} + \sqrt{a^2 + \frac{32^2}{a^2}} = a + \frac{32}{a} + \frac{\sqrt{a^4 + 32^2}}{a}.$$

$$P'(a) = 1 - \frac{32}{a^2} + \frac{a^4 - 32^2}{a^2 \cdot \sqrt{a^4 + 32^2}} = \frac{a^2 - 32}{a^2} \left(1 + \frac{a^2 + 32}{\sqrt{a^4 + 32^2}}\right).$$

$$P'(a) = 0$$
 при $a^2 - 32 = 0$. Т.к. $a > 0$, $a = 4\sqrt{2}$.

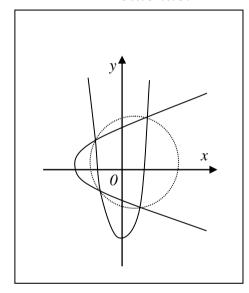
При переходе через критическую точку P'(a) меняет знак с «-» на «+», что соответствует минимуму функции.

Omsem:
$$a = b = 4\sqrt{2}$$
, $c = 8$, $P_{min} = 8(\sqrt{2} + 1)$.

5. (10 баллов)

Даны две параболы, имеющие взаимно перпендикулярные оси. Параболы пересекаются в четырех точках. Доказать, что все эти точки лежат на одной окружности.

Решение.



Возьмем две параболы:

$$x^2 = 2p_1y$$
 и $y^2 = 2p_2x$

при положительных значениях p_1 и p_2 . Эти параболы имеют перпендикулярные оси и ветви, направленные в сторону увеличения координат. Для того, чтобы они пересекались, сдвинем их так, чтобы вершины находились при отрицательных значениях координат:

$$x^2 = 2p_1(y - y_1)$$
 и $y^2 = 2p_2(x - x_1)$.
Точки пересечения являются решением

системы

$$\begin{cases} x^2 = 2p_1(y - y_1), \\ y^2 = 2p_2(x - x_1). \end{cases}$$

Если четыре точки существуют, то они также будут удовлетворять уравнению, являющемуся суммой двух заданных уравнений системы

$$x^2 + y^2 = 2p_1(y - y_1) + 2p_2(x - x_1).$$

Откуда (выделив полные квадраты) получим

$$(x - p_2)^2 + (y - p_1)^2 = p_1^2 + p_2^2 - 2p_2x_1 - 2p_1y_1.$$

Так как выражение справа положительно, имеем уравнение окружности. Следовательно, все точки лежат на одной окружности.